Abstract
The aim of this article is to predict the compressive strength of environmentally friendly concrete modified with eggshell powder. For this purpose, an optimized artificial neural network, combined with a novel metaheuristic shuffled frog leaping optimization algorithm, was employed and compared with a well-known genetic algorithm and multiple linear regression. The presented results confirm that the highest compressive strength (46 MPa on average) can be achieved for mix designs containing 7 to 9% of eggshell powder. This means that the strength increased by 55% when compared to conventional Portland cement-based concrete. The comparative results also show that the proposed artificial neural network, combined with the novel metaheuristic shuffled frog leaping optimization algorithm, offers satisfactory results of compressive strength predictions for concrete modified using eggshell powder concrete. Moreover, it has a higher accuracy than the genetic algorithm and the multiple linear regression. This finding makes the present method useful for construction practice because it enables a concrete mix with a specific compressive strength to be developed based on industrial waste that is locally available.
Subject
General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献