Impact of Climate Change on Soil Water Content in Southern Saskatchewan, Canada

Author:

Zare Mohammad,Azam ShahidORCID,Sauchyn DavidORCID

Abstract

The main objective of this research was to understand the effects of climate change on soil water content (SWC) across the Qu’Appelle River basin in southern Saskatchewan, Canada. The Soil and Water Assessment Tool (SWAT) and output from 11 high-resolution (0.22°) regional climate models (RCM) were used over three 30-year periods: the near future (2021–2050) and distant future (2051–2080) and the historical reference (1975–2005). The RCM data are from the CORDEX North American domain, which employs the RCP8.5 high-emission scenario. SWC was modeled at the hydrological response units (HRU) level and at daily and monthly (warm season only) intervals for 2015–2020. The model was calibrated and validated using SUFI-2 in SWAT-CUP based on observations for streamflow and SWC, including measured data and Soil Moisture Active Passive (SMAP) Level 4 for surface (up to 5 cm deep) soil moisture. Values of the Nash–Sutcliffe model efficiency (NS) ranged from 0.616 and 0.784 and the coefficient of determination (R2) was 0.8 for calibration and 0.82 for validation. Likewise, the correlation coefficients between ground measurements and SWAT were 0.698 and 0.633, respectively. Future climate forcing of the calibrated SWAT model revealed that warmer and drier growing seasons will prevail in the region. Similarly, the ensemble of all RCMs indicated that the mean temperature will increase by 2.1 °C and 3.4 °C for the middle and late periods, respectively, along with a precipitation increase of 10% and 11.2%. SWC is expected to decrease with an increase in potential evapotranspiration, despite an increase in precipitation. Likewise, the annual SWC is expected to decrease by 3.6% and 4% in the middle and late periods, respectively. The monthly SWC changes showed the highest decreases (5.4%) in April in the late period. The spatial pattern of SWC for 11 RCMs was similar such that the northwest and west of the river basin are wetter than the south and east. SWC projections suggest that southern Saskatchewan could experience significant SWC deficiencies in the summer by the end of this century.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3