Personal Resilience Can Be Well Estimated from Heart Rate Variability and Paralinguistic Features during Human–Robot Conversations

Author:

Hsu Shin-Min,Chen Sue-Huei,Huang Tsung-RenORCID

Abstract

Mental health is as crucial as physical health, but it is underappreciated by mainstream biomedical research and the public. Compared to the use of AI or robots in physical healthcare, the use of AI or robots in mental healthcare is much more limited in number and scope. To date, psychological resilience—the ability to cope with a crisis and quickly return to the pre-crisis state—has been identified as an important predictor of psychological well-being but has not been commonly considered by AI systems (e.g., smart wearable devices) or social robots to personalize services such as emotion coaching. To address the dearth of investigations, the present study explores the possibility of estimating personal resilience using physiological and speech signals measured during human–robot conversations. Specifically, the physiological and speech signals of 32 research participants were recorded while the participants answered a humanoid social robot’s questions about their positive and negative memories about three periods of their lives. The results from machine learning models showed that heart rate variability and paralinguistic features were the overall best predictors of personal resilience. Such predictability of personal resilience can be leveraged by AI and social robots to improve user understanding and has great potential for various mental healthcare applications in the future.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Evolving Design of a Socially Therapeutic Robotic Dog*;2023 World Symposium on Digital Intelligence for Systems and Machines (DISA);2023-09-21

2. Multimodal Emotion Detection via Attention-Based Fusion of Extracted Facial and Speech Features;Sensors;2023-06-09

3. Machine Learning-based Evaluation of Heart Rate Variability Response in Children with Autism Spectrum Disorder;2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS);2023-02-02

4. Deep Feature Extraction and Attention Fusion for Multimodal Emotion Recognition;IEEE Transactions on Circuits and Systems II: Express Briefs;2023

5. Assessing the Applicability of Machine Learning Models for Robotic Emotion Monitoring: A Survey;Applied Sciences;2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3