Predicting Survival for Veno-Arterial ECMO Using Conditional Inference Trees—A Multicenter Study

Author:

Braun Julia1ORCID,Sahli Sebastian D.2ORCID,Spahn Donat R.2ORCID,Röder Daniel3ORCID,Neb Holger4,Lotz Gösta4ORCID,Aser Raed5ORCID,Wilhelm Markus J.5ORCID,Kaserer Alexander2ORCID

Affiliation:

1. Departments of Biostatistics and Epidemiology, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, 8001 Zurich, Switzerland

2. Institute of Anesthesiology, University and University Hospital Zurich, 8091 Zurich, Switzerland

3. Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany

4. Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60596 Frankfurt, Germany

5. Clinic for Cardiac Surgery, University Heart Center, University and University Hospital Zurich, 8091 Zurich, Switzerland

Abstract

Background: Despite increasing use and understanding of the process, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) therapy is still associated with considerable mortality. Personalized and quick survival predictions using machine learning methods can assist in clinical decision making before ECMO insertion. Methods: This is a multicenter study to develop and validate an easy-to-use prognostic model to predict in-hospital mortality of VA-ECMO therapy, using unbiased recursive partitioning with conditional inference trees. We compared two sets with different numbers of variables (small and comprehensive), all of which were available just before ECMO initiation. The area under the curve (AUC), the cross-validated Brier score, and the error rate were applied to assess model performance. Data were collected retrospectively between 2007 and 2019. Results: 837 patients were eligible for this study; 679 patients in the derivation cohort (median (IQR) age 60 (49 to 69) years; 187 (28%) female patients) and a total of 158 patients in two external validation cohorts (median (IQR) age 57 (49 to 65) and 70 (63 to 76) years). For the small data set, the model showed a cross-validated error rate of 35.79% and an AUC of 0.70 (95% confidence interval from 0.66 to 0.74). In the comprehensive data set, the error rate was the same with a value of 35.35%, with an AUC of 0.71 (95% confidence interval from 0.67 to 0.75). The mean Brier scores of the two models were 0.210 (small data set) and 0.211 (comprehensive data set). External validation showed an error rate of 43% and AUC of 0.60 (95% confidence interval from 0.52 to 0.69) using the small tree and an error rate of 35% with an AUC of 0.63 (95% confidence interval from 0.54 to 0.72) using the comprehensive tree. There were large differences between the two validation sets. Conclusions: Conditional inference trees are able to augment prognostic clinical decision making for patients undergoing ECMO treatment. They may provide a degree of accuracy in mortality prediction and prognostic stratification using readily available variables.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3