Ecological Niche Models Reveal Climate Change Effect on Biogeographical Regions: The Iberian Peninsula as a Case Study

Author:

Sousa-Guedes DianaORCID,Arenas-Castro SalvadorORCID,Sillero NeftalíORCID

Abstract

How species are distributed on Earth depends largely on climate factors. Whenever these environmental conditions change, species tend to shift their distributions to reach more favourable conditions. Distinct sets of species similarly distributed (i.e., chorotypes) occur in biogeographical regions with homogeneous environmental conditions. Here, we analysed whether biogeographical regions are unstable over time (from the past to the future). We modelled the realised niche of amphibians and reptiles in the Iberian Peninsula in the present, and several past and future climate scenarios. Then, we used Jaccard’s index and the unweighted pair group method (UPGMA) to define the biogeographical regions. Our results suggest that the biogeographical regions of Iberian amphibians and reptiles changed greatly over time, due to the climatic changes between periods. Biogeographical regions composed of species with Atlantic affinities changed particularly, overall gaining suitable areas in past colder periods and losing suitable areas in warmer periods. The areas of refugia for amphibians over time corresponded to the most humid regions (north-west of the peninsula), while the most important areas for reptiles occur in the south and on the Atlantic coast. The identification of biogeographical patterns considering past climate changes is essential to better apply conservation measures.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3