Land Cover Classification of Remote Sensing Images Based on Hierarchical Convolutional Recurrent Neural Network

Author:

Fan Xiangsuo12,Chen Lin1,Xu Xinggui3,Yan Chuan1,Fan Jinlong4,Li Xuyang1ORCID

Affiliation:

1. School of Automation, Guangxi University of Science and Technology, Liuzhou 545006, China

2. Guangxi Collaborative Innovation Centre for Earthmoving Machinery, Guangxi University of Science and Technology, Liuzhou 545006, China

3. School of Information, Yunnan University of Finance and Economics, Kunming 650221, China

4. National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

Abstract

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have gained improved results in remote sensing image data classification. Multispectral image classification can benefit from the rich spectral information extracted by these models for land cover classification. This paper proposes a classification model called a hierarchical convolutional recurrent neural network (HCRNN) to combine the CNN and RNN modules for pixel-level classification of multispectral remote sensing images. In the HCRNN model, the original 13-band information from Sentinel-2 is transformed into a 1D multispectral sequence using a fully connected layer. It is then reshaped into a 3D multispectral feature matrix. The 2D-CNN features are extracted and used as inputs to the corresponding hierarchical RNN. The feature information at each level is adapted to the same convolution size. This network structure fully leverages the advantages of CNNs and RNNs to extract temporal and spatial features from the spectral data, leading to high-precision pixel-level multispectral remote sensing image classification. The experimental results demonstrate that the overall accuracy of the HCRNN model on the Sentinel-2 dataset reaches 97.62%, which improves the performance by 1.78% compared to the RNN model. Furthermore, this study focused on the changes in forest cover in the study area of Laibin City, Guangxi Zhuang Autonomous Region, which was 7997.1016 km2, 8990.4149 km2, and 8103.0020 km2 in 2017, 2019, and 2021, respectively, with an overall trend of a small increase in the area covered.

Funder

National Natural Science Foundation of China

ESA project

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3