Assessment of Artificial Forest Restoration by Exploring the Microbial Community Structure and Function in a Reclaimed Coal Gob Pile in a Loess Hilly Area of Shanxi, China

Author:

Liu Shuang1ORCID,He Jiuping1,Ning Yuewei1,Li Junjian1,Zhang Hong2,Liu Yong1

Affiliation:

1. Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China

2. College of Environment and Resources, Shanxi University, Taiyuan 030006, China

Abstract

In this study, soil obtained from a reclaimed coal gob pile was expected to be rapidly improved with the use of artificial vegetation restoration practices, such as artificial forests, which increase the taxonomic variety in the soil microbial community and its functions. In order to successfully identify the effect of artificial forest restoration project on the soil’s quality, a field study was conducted on soil reclaimed from a coal gob pile in a loess hilly area located in Shanxi to assess the effects of five commonly used artificially restored coniferous forest species (i.e., Platycladus orientalis: PO, Sabina chinensis: SC, Pinus sylvestris: PS, Picea asperata: PA and Pinus tabuliformis: PT) on the soil’s physico-chemical properties, the bacterial community and functional gene attributes. The results showed that significant differences were observed in the bacterial community’s diversity and structure, as well as in functional genes, among the different artificial tree species. PS and PA presented lower pH and bulk density levels and higher soil alkaline protease (PRO), alkaline phosphatase (ALP) and urease (URE) activities, in comparison to other tree species. The bacterial community’s diversity and functional genes were noticeably higher in both PS and PA. In addition, soil bulk density and pH can directly affect the soil keystone bacteria and microbial functions and can indirectly affect the soil keystone genus and microbial functions by affecting the soil nutrient elements and enzyme activity. Moreover, soil bacterial keystone bacteria significantly affect these functions. Finally, compared to the other coniferous tree species, PS and PA presented a significantly higher integrated fertility index (IFI) score. Therefore, PS and PA might be more suited to the forest restoration project using reclaimed soil obtained from a coal gob pile located in Shanxi’s mining region. The present research contributes to the understanding of how various tree species affect microbial populations and functions in similar mining zones and/or hilly terrains.

Funder

National Natural Science Foundation of China

Key R&D program

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3