Abstract
Time evolving Random Network Models are presented as a mathematical framework for modelling and analyzing the evolution of complex networks. This framework allows the analysis over time of several network characterizing features such as link density, clustering coefficient, degree distribution, as well as entropy-based complexity measures, providing new insight on the evolution of random networks. First, some simple dynamic network models, based only on edge density, are analyzed to serve as a baseline reference for assessing more complex models. Then, a model that depends on network structure with the aim of reflecting some characteristics of real networks is also analyzed. Such model shows a more sophisticated behavior with two different regimes, one of them leading to the generation of high clustering coefficient/link density ratio values when compared with the baseline values, as it happens in many real networks. Simulation examples are discussed to illustrate the behavior of the proposed models.
Funder
Ministerio de Economía y Competitividad
Subject
General Physics and Astronomy
Reference22 articles.
1. Collective dynamics of ‘small-world’ networks
2. Statistical mechanics of complex networks
3. Networks: An Introduction;Newman,2010
4. The Structure and Dynamics of Networks;Newman,2011
5. Evolution of Networks: From Biological Nets to the Internet and WWW;Dorogovtsev,2013
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献