Evaluating Deep Learning Techniques for Blind Image Super-Resolution within a High-Scale Multi-Domain Perspective

Author:

de Santiago Júnior Valdivino Alexandre1ORCID

Affiliation:

1. Coordenação de Pesquisa Aplicada e Desenvolvimento Tecnológico (COPDT), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo 12227-010, Brazil

Abstract

Despite several solutions and experiments have been conducted recently addressing image super-resolution (SR), boosted by deep learning (DL), they do not usually design evaluations with high scaling factors. Moreover, the datasets are generally benchmarks which do not truly encompass significant diversity of domains to proper evaluate the techniques. It is also interesting to remark that blind SR is attractive for real-world scenarios since it is based on the idea that the degradation process is unknown, and, hence, techniques in this context rely basically on low-resolution (LR) images. In this article, we present a high-scale (8×) experiment which evaluates five recent DL techniques tailored for blind image SR: Adaptive Pseudo Augmentation (APA), Blind Image SR with Spatially Variant Degradations (BlindSR), Deep Alternating Network (DAN), FastGAN, and Mixture of Experts Super-Resolution (MoESR). We consider 14 datasets from five different broader domains (Aerial, Fauna, Flora, Medical, and Satellite), and another remark is that some of the DL approaches were designed for single-image SR but others not. Based on two no-reference metrics, NIQE and the transformer-based MANIQA score, MoESR can be regarded as the best solution although the perceptual quality of the created high-resolution (HR) images of all the techniques still needs to improve.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3