Predicting Cellular Rejection of Renal Allograft Based on the Serum Proteomic Fingerprint

Author:

Ramalhete Luís123ORCID,Vieira Miguel Bigotte4ORCID,Araújo Rúben2ORCID,Vigia Emanuel25ORCID,Aires Inês4,Ferreira Aníbal24ORCID,Calado Cecília R. C.67ORCID

Affiliation:

1. Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, n° 117, 1769-001 Lisboa, Portugal

2. NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal

3. iNOVA4Health—Advancing Precision Medicine, RG11: Reno-Vascular Diseases Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal

4. Serviço de Nefrologia, Nova Medical School, Hospital Curry Cabral, Centro Hospitalar de Lisboa Central, 1050-099 Lisbon, Portugal

5. Hepatobiliopancreatic and Transplantation Center, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, 1050-099 Lisbon, Portugal

6. ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisbon, Portugal

7. Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract

Kidney transplantation is an essential medical procedure that significantly enhances the survival rates and quality of life for patients with end-stage kidney disease. However, despite advancements in immunosuppressive therapies, allograft rejection remains a leading cause of organ loss. Notably, predictions of cellular rejection processes primarily rely on biopsy analysis, which is not routinely performed due to its invasive nature. The present work evaluates if the serum proteomic fingerprint, as acquired by Fourier Transform Infrared (FTIR) spectroscopy, can predict cellular rejection processes. We analyzed 28 serum samples, corresponding to 17 without cellular rejection processes and 11 associated with cellular rejection processes, as based on biopsy analyses. The leave-one-out-cross validation procedure of a Naïve Bayes model enabled the prediction of cellular rejection processes with high sensitivity and specificity (AUC > 0.984). The serum proteomic profile was obtained in a high-throughput mode and based on a simple, rapid, and economical procedure, making it suitable for routine analyses and large-scale studies. Consequently, the current method presents a high potential to predict cellular rejection processes translatable to clinical scenarios, and that should continue to be explored.

Funder

Fundação para a Ciência e Tecnologia

Instituto Politécnico de Lisboa

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3