Contrast Agents Based on Human Serum Albumin and Nitroxides for 1H-MRI and Overhauser-Enhanced MRI
-
Published:2024-04-05
Issue:7
Volume:25
Page:4041
-
ISSN:1422-0067
-
Container-title:International Journal of Molecular Sciences
-
language:en
-
Short-container-title:IJMS
Author:
Mitin Dmitry1, Bullinger Friedemann2, Dobrynin Sergey3ORCID, Engelmann Jörn2, Scheffler Klaus24, Kolokolov Mikhail5ORCID, Krumkacheva Olesya5ORCID, Buckenmaier Kai2, Kirilyuk Igor3ORCID, Chubarov Alexey1ORCID
Affiliation:
1. Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia 2. High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany 3. N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia 4. Department of Biomedical Magnetic Resonance, Eberhard-Karls University, 72076 Tuebingen, Germany 5. International Tomography Center SB RAS, 630090 Novosibirsk, Russia
Abstract
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this study, a macromolecular construct based on human serum albumin and nitroxyl radicals (HSA-NIT) was developed using a new synthesis method that significantly increased the modification to 21 nitroxide residues per protein. This was confirmed by electron paramagnetic resonance (EPR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry. Gel electrophoresis and circular dichroism showed no significant changes in the structure of HSA-NITs, and no oligomers were formed during modification. The cytotoxicity of HSA-NITs was comparable to that of native albumin. HSA-NITs were evaluated as potential “metal-free” organic radical relaxation-based contrast agents for 1H-MRI and as hyperpolarizing contrast agents for OMRI. Relaxivities (longitudinal and transversal relaxation rates r1 and r2) for HSA-NITs were measured at different magnetic field strengths (1.88, 3, 7, and 14 T). Phantoms were used to demonstrate the potential use of HSA-NIT as a T1- and T2-weighted relaxation-based contrast agent at 3 T and 14 T. The efficacy of 1H Overhauser dynamic nuclear polarization (ODNP) in liquids at an ultralow magnetic field (ULF, B0 = 92 ± 0.8 μT) was investigated for HSA-NIT conjugates. The HSA-NITs themselves did not show ODNP enhancement; however, under the proteolysis conditions simulating cancer tissue, HSA-NIT conjugates were cleaved into lower-molecular-weight (MW) protein fragments that activate ODNP capabilities, resulting in a maximum achievable enhancement |Emax| of 40–50 and a radiofrequency power required to achieve half of Emax, P1/2, of 21–27 W. The HSA-NIT with a higher degree of modification released increased the number of spin probes upon biodegradation, which significantly enhanced the Overhauser effect. Thus, HSA-NITs may represent a new class of MRI relaxation-based contrast agents as well as novel cleavable conjugates for use as hyperpolarizing contrast agents (HCAs) in OMRI.
Funder
Russian Science Foundation DFG
Reference126 articles.
1. Yousaf, T., Dervenoulas, G., and Politis, M. (2018). Advances in MRI Methodology, Elsevier Inc.. [1st ed.]. 2. Gadolinium as an MRI contrast agent;Kim;Future Med. Chem.,2018 3. Bartusik-Aebisher, D., Bober, Z., Zalejska-Fiolka, J., Kawczyk-Krupka, A., and Aebisher, D. (2022). Multinuclear MRI in Drug Discovery. Molecules, 27. 4. Caspani, S., Magalhães, R., Araújo, J.P., and Sousa, C.T. (2020). Magnetic nanomaterials as contrast agents for MRI. Materials, 13. 5. Lv, J., Roy, S., Xie, M., Yang, X., and Guo, B. (2023). Contrast Agents of Magnetic Resonance Imaging and Future Perspective. Nanomaterials, 13.
|
|