What Is the “Hydrogen Bond”? A QFT-QED Perspective

Author:

Renati Paolo12,Madl Pierre23ORCID

Affiliation:

1. World Water Community, NL-3029 Rotterdam, The Netherlands

2. Prototyping Unit, Edge-Institute, ER-System Mechatronics, A-5440 Golling, Austria

3. Department of Biosciences & Medical Biology, University of Salzburg, A-5020 Salzburg, Austria

Abstract

In this paper we would like to highlight the problems of conceiving the “Hydrogen Bond” (HB) as a real short-range, directional, electrostatic, attractive interaction and to reframe its nature through the non-approximated view of condensed matter offered by a Quantum Electro-Dynamic (QED) perspective. We focus our attention on water, as the paramount case to show the effectiveness of this 40-year-old theoretical background, which represents water as a two-fluid system (where one of the two phases is coherent). The HB turns out to be the result of the electromagnetic field gradient in the coherent phase of water, whose vacuum level is lower than in the non-coherent (gas-like) fraction. In this way, the HB can be properly considered, i.e., no longer as a “dipolar force” between molecules, but as the phenomenological effect of their collective thermodynamic tendency to occupy a lower ground state, compatible with temperature and pressure. This perspective allows to explain many “anomalous” behaviours of water and to understand why the calculated energy associated with the HB should change when considering two molecules (water-dimer), or the liquid state, or the different types of ice. The appearance of a condensed, liquid, phase at room temperature is indeed the consequence of the boson condensation as described in the context of spontaneous symmetry breaking (SSB). For a more realistic and authentic description of water, condensed matter and living systems, the transition from a still semi-classical Quantum Mechanical (QM) view in the first quantization to a Quantum Field Theory (QFT) view embedded in the second quantization is advocated.

Publisher

MDPI AG

Reference84 articles.

1. Hydrogen Fluoride and its Solutions;Simons;Chem. Rev.,1931

2. Verteilung eines Stoffes zwischen zwei Lösungsmitteln und zwischen Lösungsmittel und Dampfraum;Nernst;Zeitschr Phys. Chem.,1891

3. The States of Amines in Aqueous Solutions;Moore;J. Chem. Soc. Trans.,1912

4. The Crystal Structure of Ice;Bragg;Proc. Phys. Soc. Lond.,1922

5. 50 Years of Hydrogen Bond Theory;Huggins;Angew. Chem. Int. Ed.,1971

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3