Identification and Characterization of C-Mos in Pearl Mussel Hyriopsis cumingii and Its Role in Gonadal Development

Author:

Liu Zongyu123,Jin Xin123,Miao Yulin123,Wang Ping123,Gu Yang123,Shangguan Xiaozhao123,Chen Lijing4,Wang Guiling123

Affiliation:

1. Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China

2. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China

3. Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China

4. Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China

Abstract

C-Mos, a proto-oncogene, regulates oocyte maturation by activating the classical MAPK pathway in cells. To examine the function of C-Mos in Hyriopsis cumingii, C-Mos was identified in this study. The full-length cDNA of C-Mos was 2213 bp, including 144 bp in the 5′ UTR, 923 bp in 3′ the UTR, and 1146 bp in the open reading frame (ORF) region. During early gonad development, the expression of C-Mos from 4 to 6 months of age in H. cumingii was significantly higher than that in other months, with the highest expression in 6-month-old H. cumingii, suggesting that C-Mos may be involved in early gonadal development in H. cumingii. Clear hybridization signals were found by in situ hybridization in the oocytes, oocyte nucleus and oogonium, and a small number of hybridization signals were found in the follicular wall of the male gonads. In addition, the C-Mos RNA interference (RNAi) assay results showed that the knockdown of C-Mos caused a down-regulation of ERK and P90rsk. In summary, these results indicate that C-Mos has a crucial part to play in gonadal development in H. cumingii.

Funder

National Key R&D Program of China

earmarked fund for CARS

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3