RNA-Seq Analysis of Aboveground and Underground Parts of Biomass Sorghum Was Performed to Evaluate Its Suitability for Environmental Remediation

Author:

Zhou Tao1,Ling Dingxun2,He Qihao2,Wang Ping2,Zhu Jian2

Affiliation:

1. College of Life Science and Technology, Central South University of Forestry and Technology, No.498, South Shaoshan Road, Changsha 410004, China

2. College of Environmental Science and Engineering, Central South University of Forestry and Technology, No.498, South Shaoshan Road, Changsha 410004, China

Abstract

“Alto2” is a new biomass sorghum variety, which has the characteristics of fast growth, high growth, and strong cadmium (Cd) resistance, so it has the application prospect of soil remediation plants. In order to reveal the Cd resistance mechanism of this plant and pave the way for genetic breeding and cultivation of efficient remediation plants in the future, in this research, through the determination of Cd content in various tissues of sorghum under Cd stress and the physicochemical response combined with RNA-Seq analysis, the mechanism of Cd resistance of “Alto2” was initially revealed. The results show biomass sorghum “Alto2” was mainly connected with aboveground and underground parts through the MAPK signaling pathway and plant hormone signaling pathway, and transmit stress signal in response to Cd stress. Chelase and metal-binding proteins may be the functional genes mainly responsible for Cd enrichment and transport and regulated by stress signals. However, the expression of aboveground transporters was not significant. This may be because Cd in biomass sorghum is mainly concentrated in the underground part and is enriched by the chelation of secondary metabolites from plant roots by the cell wall leading to inhibition of aboveground transporter expression. The results of this study indicate that the biomass sorghum “Alto2” on Cd has high resistance, but the lack of the aboveground enrichment of transportability requires further research to improve the Cd transportability of this plant.

Funder

General Program of the National Natural Science Foundation of China

National Key Research and Development Program of China

Youth Fund Project of the National Natural Science Foundation of China

Higher Educational Institutions Innovation Platform open fund project of Hunan Province

Changsha Science and Technology Bureau Project

Hunan Provincial Education Department and Innovation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3