Complementary Effects of Dark Septate Endophytes and Trichoderma Strains on Growth and Active Ingredient Accumulation of Astragalus mongholicus under Drought Stress

Author:

Li Min,Ren Yanfang,He ChaoORCID,Yao Jiaojie,Wei Miao,He XueliORCID

Abstract

Drought is a major abiotic stress factor affecting plant growth and production, while utilizing beneficial endophytic fungi is one of the most promising strategies for enhancing plant growth and drought tolerance. In the current study, a pot experiment was conducted to investigate the beneficial effects of dark septate endophyte (DSE) (Macrophomina pseudophaseolina, Paraphoma radicina) and Trichoderma (Trichoderma afroharzianum, Trichoderma longibrachiatum) inoculum on Astragalus mongholicus grown in sterile soil under drought stress, alone, or in combination. The addition of Trichoderma enhanced the DSE colonization in roots regardless of the water condition. Under well-watered conditions, M. pseudophaseolina inoculation significantly enhanced the biomass and root length of A. mongholicus. The two DSE and Trichoderma inoculum significantly improved calycosin-7-O-β-D-glucoside content. However, M. pseudophaseolina + T. afroharzianum inoculation better promoted root growth, whereas co-inoculation had higher active ingredient contents compared with single inoculation, except for P. radicina + T. afroharzianum. Under drought stress, DSE and Trichoderma inoculum significantly improved root biomass, root length, calycosin-7-O-β-D-glucoside content, and activities of nitrate reductase and soil urease. P. radicina + T. afroharzianum and P. radicina + T. longibrachiatum better increased root length, and all combinations of DSE and Trichoderma had a greater impact on the increase in formononetin content compared with the single treatments. Additionally, Trichoderma relies on antioxidant enzymes, growth hormones, and the redox system (ascorbic acid–glutathione) to resist drought, while DSE strains have an additional osmotic regulation system in addition to the drought resistance function possessed by Trichoderma, and the effect of co-inoculation (especially M. pseudophaseolina + T. longibrachiatum and P. radicina + T. afroharzianum) on plant physiological parameters was greater than that of single inoculation. This study provides a new research direction for the effects of DSE and Trichoderma on medicinal plant cultivated in dryland.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3