Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds

Author:

Chiu Yung-Cheng,Shie Ming-YouORCID,Lin Yen-Hong,Lee Alvin Kai-Xing,Chen Yi-Wen

Abstract

In this study, we synthesized strontium-contained calcium silicate (SrCS) powder and fabricated SrCS scaffolds with controlled precise structures using 3D printing techniques. SrCS scaffolds were shown to possess increased mechanical properties as compared to calcium silicate (CS) scaffolds. Our results showed that SrCS scaffolds had uniform interconnected macropores (~500 µm) with a compressive strength 2-times higher than that of CS scaffolds. The biological behaviors of SrCS scaffolds were assessed using the following characteristics: apatite-precipitating ability, cytocompatibility, proliferation, and osteogenic differentiation of human mesenchymal stem cells (MSCs). With CS scaffolds as controls, our results indicated that SrCS scaffolds demonstrated good apatite-forming bioactivity with sustained release of Si and Sr ions. The in vitro tests demonstrated that SrCS scaffolds possessed excellent biocompatibility which in turn stimulated adhesion, proliferation, and differentiation of MSCs. In addition, the SrCS scaffolds were able to enhance MSCs synthesis of osteoprotegerin (OPG) and suppress macrophage colony-stimulating factor (M-CSF) thus disrupting normal bone homeostasis which led to enhanced bone formation over bone resorption. Implanted SrCS scaffolds were able to promote new blood vessel growth and new bone regeneration within 4 weeks after implantation in critical-sized rabbit femur defects. Therefore, it was shown that 3D printed SrCS scaffolds with specific controllable structures can be fabricated and SrCS scaffolds had enhanced mechanical property and osteogenesis behavior which makes it a suitable potential candidate for bone regeneration.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3