Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy

Author:

Xiao Shupei,He YongORCID

Abstract

The illegal adulteration of sildenafil in herbal food supplements and alcoholic drinks immensely threatens human health due to its harmful side-effects. Therefore, it is important to accurately detect and identify the presence of sildenafil in alcoholic drinks. In this study, Opto Trace Raman 202 (OTR 202) was used as surface enhanced Raman spectroscopy (SERS) active colloids to detect sildenafil. The results demonstrated that the Raman enhancement factor (EF) of OTR 202 colloids reached 1.84 × 107 and the limits of detection (LODs) of sildenafil in health wine and liquor were found to be as low as 0.1 mg/L. Moreover, the SERS peaks of 645, 814, 1235, 1401, 1530 and 1584 cm−1 could be qualitatively determined as sildenafil characteristic peaks and the relationship between Raman peak intensity and sildenafil concentration in health wine and liquor were different. There was a good linear correlation between Raman peak intensity, and sildenafil concentration in health wine ranged 0.1–1 mg/L (0.9687< R2 < 0.9891) and 1–10 mg/L (0.9701 < R2 < 0.9840), and in liquor ranged 0.1–1 mg/L (0.9662 < R2 < 0.9944) and 1–20 mg/L (0.9625 < R2 < 0.9922). The relative standard deviations (RSD) were less than 5.90% (sildenafil in health wine) and 9.16% (sildenafil in liquor). The recovery ranged 88.92–104.42% (sildenafil in health wine) and 90.09–104.55% (sildenafil in liquor). In general, the sildenafil in health wine and liquor could be rapidly and quantitatively determined using SERS technique, which offered a simple and accurate alternative for the determination of sildenafil in alcoholic drinks.

Funder

Major science and technology projects in Zhejiang

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3