Cardiac Troponins are Among Targets of Doxorubicin-Induced Cardiotoxicity in hiPCS-CMs

Author:

Adamcova Michaela,Skarkova Veronika,Seifertova Jitka,Rudolf EmilORCID

Abstract

Modern diagnostic strategies for early recognition of cancer therapeutics-related cardiac dysfunction involve cardiac troponins measurement. Still, the role of other markers of cardiotoxicity is still unclear. The present study was designed to investigate dynamics of response of human cardiomyocytes derived from induced pluripotent stem cells (hiPCS-CMs) to doxorubicin with the special emphasis on their morphological changes in relation to expression and organization of troponins. The hiPCS-CMs were treated with doxorubicin concentrations (1 and 0.3 µM) for 48 h and followed for next up to 6 days. Exposure of hiPCS-CMs to 1 µM doxorubicininduced suppression of both cardiac troponin T (cTnT) and cardiac troponin I (cTnI) gene expression. Conversely, lower 0.3 µM doxorubicin concentration produced no significant changes in the expression of aforementioned genes. However, the intracellular topography, arrangement, and abundance of cardiac troponin proteins markedly changed after both doxorubicin concentrations. In particular, at 48 h of treatment, both cTnT and cTnI bundles started to reorganize, with some of them forming compacted shapes extending outwards and protruding outside the cells. At later intervals (72 h and onwards), the whole troponin network collapsed and became highly disorganized following, to some degree, overall changes in the cellular shape. Moreover, membrane permeability of cardiomyocytes was increased, and intracellular mitochondrial network rearranged and hypofunctional. Together, our results demonstrate complex effects of clinically relevant doxorubicin concentrations on hiPCS-CM cells including changes in cTnT and cTnI, but also in other cellular compartments contributing to the overall cytotoxicity of this class of cytostatics.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3