Abstract
As the demand for multi-walled carbon nanotube (MWCNT) incorporation into industrial and biomedical applications increases, so does the potential for unintentional pulmonary MWCNT exposure, particularly among workers during manufacturing. Pulmonary exposure to MWCNTs raises the potential for development of lung inflammation, fibrosis, and cancer among those exposed; however, there are currently no effective biomarkers for detecting lung fibrosis or predicting the risk of lung cancer resulting from MWCNT exposure. To uncover potential mRNAs and miRNAs that could be used as markers of exposure, this study compared in vivo mRNA and miRNA expression in lung tissue and blood of mice exposed to MWCNTs with in vitro mRNA and miRNA expression from a co-culture model of human lung epithelial and microvascular cells, a system previously shown to have a higher overall genome-scale correlation with mRNA expression in mouse lungs than either cell type grown separately. Concordant mRNAs and miRNAs identified by this study could be used to drive future studies confirming human biomarkers of MWCNT exposure. These potential biomarkers could be used to assess overall worker health and predict the occurrence of MWCNT-induced diseases.
Funder
National Institutes of Health
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference41 articles.
1. The Global Carbon Nanotubes (CNT) Market (2018–2023) is Projected to Grow at a CAGR of 16.7% - Technological Advancements and Decreasing Production Cost is Driving Growthhttps://www.prnewswire.com/news-releases/the-global-carbon-nanotubes-cnt-market-2018-2023-is-projected-to-grow-at-a-cagr-of-16-7---technological-advancements-and-decreasing-production-cost-is-driving-growth-300752102.html
2. Biodistribution of carbon nanotubes in animal models;Jacobsen;Basic. Clin. Pharmacol. Toxicol.,2017
3. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans
4. Pulmonary toxicity of two different multi-walled carbon nanotubes in rat: Comparison between intratracheal instillation and inhalation exposure
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献