Mechanistic and Kinetic Study on Self-/Cross- Condensation of PCTA/DT Formation Mechanisms from Three Types of Radicals of 2,4-Dichlorothiophenol

Author:

Wang Hetong,Zuo Chenpeng,Zheng Siyuan,Sun Yanhui,Xu Fei,Zhang Qingzhu

Abstract

Chlorothiophenols (CTPs) are known to be key and direct precursors of polychlorinated thianthrene/dibenzothiophenes (PCTA/DTs). Self/cross-coupling of the chlorothiophenoxy radicals (CTPRs), sulfydryl-substituted phenyl radicals and thiophenoxyl diradicals evolving from CTPs are initial and important steps for PCTA/DT formation. In this study, quantum chemical calculations were carried out to investigate the homogenous gas-phase formation of PCTA/DTs from self/cross-coupling of 2,4-dichlorothiophenoxy radical (R1), 2-sulfydryl-3,5-dichlorophenyl radical (R2) and 3,5-dichlorothiophenoxyl diradical (DR) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600–1200 K, using canonical variational transition state theory with a small curvature tunneling contribution. For the formation of PCTAs, the S•/σ-C• condensation with both thiophenolic sulfur in one radical and ortho carbon in the other radical bonded to single electron is the most efficient sulfur-carbon coupling mode, and the ranking of the PCTA formation potential is DR + DR > R2 + DR > R1 + DR > R1 + R2 > R1 + R1. For the formation of PCDTs, the σ-C•/σ-C• coupling with both ortho carbon in the two radicals bonded to single electron is the energetically favored carbon-carbon coupling mode, and the ranking of the PCDT formation potential is: R2 + DR > R2 + R2 > R1 + DR > R1 + R2 > R1 + R1. The PCTA/DTs could be produced from R1, R2 and DR much more readily than PCDD/DFs from corresponding oxygen substituted radicals.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Research and Development Funds

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3