Synaptic Vesicles Having Large Contact Areas with the Presynaptic Membrane are Preferentially Hemifused at Active Zones of Frog Neuromuscular Junctions Fixed during Synaptic Activity

Author:

Jung Jae Hoon

Abstract

Synaptic vesicles dock on the presynaptic plasma membrane of axon terminals and become ready to fuse with the presynaptic membrane or primed. Fusion of the vesicle membrane and presynaptic membrane results in the formation of a pore between the membranes, through which the vesicle’s neurotransmitter is released into the synaptic cleft. A recent electron tomography study on frog neuromuscular junctions fixed at rest showed that there is no discernible gap between or merging of the membrane of docked synaptic vesicles with the presynaptic membrane, however, the extent of the contact area between the membrane of docked synaptic vesicles and the presynaptic membrane varies 10-fold with a normal distribution. The study also showed that when the neuromuscular junctions are fixed during repetitive electrical nerve stimulation, the portion of large contact areas in the distribution is reduced compared to the portion of small contact areas, suggesting that docked synaptic vesicles with the largest contact areas are greatly primed to fuse with the membrane. Furthermore, the finding of several hemifused synaptic vesicles among the docked vesicles was briefly reported. Here, the spatial relationship of 81 synaptic vesicles with the presynaptic membrane at active zones of the neuromuscular junctions fixed during stimulation is described in detail. For the most of the vesicles, the combined thickness of each of their contact sites was not different from the sum of the membrane thicknesses of the vesicle membrane and presynaptic membrane, similar to the docked vesicles at active zones of the resting neuromuscular junctions. However, the combined membrane thickness of a small portion of the vesicles was considerably less than the sum of the membrane thicknesses, indicating that the membranes at their contact sites were fixed in a state of hemifusion. Moreover, the hemifused vesicles were found to have large contact areas with the presynaptic membrane. These findings support the recently proposed hypothesis that, at frog neuromuscular junctions, docked synaptic vesicles with the largest contact areas are most primed for fusion with the presynaptic membrane, and that hemifusion is a fusion intermediate step of the vesicle membrane with the presynaptic membrane for synaptic transmission.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference66 articles.

1. synaptic vesicles and pouches at the level of "active zones" of the neuromuscular junction;Couteaux;C R Acad. Sci. Hebd Seances Acad. Sci. D,1970

2. The Fine Structure of the Nervous System: Neurons and Their Supporting Cells;Peters,1991

3. Functional changes in frog neuromuscular junctions studied with freeze-fracture

4. Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin

5. Are the presynaptic membrane particles the calcium channels?

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What Happened in the Hippocampal Axon in a Rat Model of Posttraumatic Stress Disorder;Cellular and Molecular Neurobiology;2020-09-15

2. The Decade of Super-Resolution Microscopy of the Presynapse;Frontiers in Synaptic Neuroscience;2020-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3