Abstract
Canopy closure (CC) is an important parameter in forest ecosystems and has diverse applications in a wide variety of fields. Canopy closure estimation models, using a combination of measured data and remote sensing data, can largely replace traditional survey methods for CC. However, it is difficult to estimate the forest CC based on high spatial resolution remote sensing images. This study used China Gaofen-1 satellite (GF-1) images, and selected China’s north temperate Wangyedian Forest Farm (WYD) and subtropical Gaofeng Forest Farm (GF) as experimental areas. A parametric model (multiple linear regression (MLR)), non-parametric model (random forest (RF)), and semi-parametric model (generalized additive model (GAM)) were developed. The ability of the three models to estimate the CC of plantations based on high spatial resolution remote sensing GF-1 images and their performance in the two experimental areas was analyzed and compared. The results showed that the decision coefficient (R2), root mean square error (RMSE), and relative root mean square error (rRMSE) values of the parametric model (MLR), semi-parametric model (GAM), and non-parametric model (RF) for the WYD forest ranged from 0.45 to 0.69, 0.0632 to 0.0953, and 9.98% to 15.05%, respectively, and in the GF forest the R2, RMSE, and rRMSE values ranged from 0.40 to 0.59, 0.0967 to 0.1152, and 16.73% to 19.93%, respectively. The best model in the two study areas was the GAM and the worst was the RF. The accuracy of the three models established in the WYD was higher than that in the GF area. The RMSE and rRMSE values for the MLR, GAM, and RF established using high spatial resolution GF-1 remote sensing images in the two test areas were within the scope of existing studies, indicating the three CC estimation models achieved satisfactory results.
Funder
Fundamental Research Funds for the Central Universities