Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric Models Based on GF-1 Remote Sensing Images

Author:

Li JiaruiORCID,Mao XuegangORCID

Abstract

Canopy closure (CC) is an important parameter in forest ecosystems and has diverse applications in a wide variety of fields. Canopy closure estimation models, using a combination of measured data and remote sensing data, can largely replace traditional survey methods for CC. However, it is difficult to estimate the forest CC based on high spatial resolution remote sensing images. This study used China Gaofen-1 satellite (GF-1) images, and selected China’s north temperate Wangyedian Forest Farm (WYD) and subtropical Gaofeng Forest Farm (GF) as experimental areas. A parametric model (multiple linear regression (MLR)), non-parametric model (random forest (RF)), and semi-parametric model (generalized additive model (GAM)) were developed. The ability of the three models to estimate the CC of plantations based on high spatial resolution remote sensing GF-1 images and their performance in the two experimental areas was analyzed and compared. The results showed that the decision coefficient (R2), root mean square error (RMSE), and relative root mean square error (rRMSE) values of the parametric model (MLR), semi-parametric model (GAM), and non-parametric model (RF) for the WYD forest ranged from 0.45 to 0.69, 0.0632 to 0.0953, and 9.98% to 15.05%, respectively, and in the GF forest the R2, RMSE, and rRMSE values ranged from 0.40 to 0.59, 0.0967 to 0.1152, and 16.73% to 19.93%, respectively. The best model in the two study areas was the GAM and the worst was the RF. The accuracy of the three models established in the WYD was higher than that in the GF area. The RMSE and rRMSE values for the MLR, GAM, and RF established using high spatial resolution GF-1 remote sensing images in the two test areas were within the scope of existing studies, indicating the three CC estimation models achieved satisfactory results.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3