A Double-Layer Indemnity Enhancement Using LSTM and HASH Function Technique for Intrusion Detection System

Author:

Ali Abdullah Marish1ORCID,Alqurashi Fahad1,Alsolami Fawaz Jaber1ORCID,Qaiyum Sana2

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

Abstract

The Intrusion Detection System (IDS) is the most widely used network security mechanism for distinguishing between normal and malicious traffic network activities. It aids network security in that it may identify unforeseen hazards in network traffic. Several techniques have been put forth by different researchers for network intrusion detection. However, because network attacks have increased dramatically, making it difficult to execute precise detection rates quickly, the demand for effectively recognizing network incursion is growing. This research proposed an improved solution that uses Long Short-Term Memory (LSTM) and hash functions to construct a revolutionary double-layer security solution for IoT Network Intrusion Detection. The presented framework utilizes standard and well-known real-time IDS datasets such as KDDCUP99 and UNSWNB-15. In the presented framework, the dataset was pre-processed, and it employed the Shuffle Shepherd Optimization (SSO) algorithm for tracking the most informative attributes from the filtered database. Further, the designed model used the LSTM algorithm for classifying the normal and malicious network traffic precisely. Finally, a secure hash function SHA3-256 was utilized for countering the attacks. The intensive experimental assessment of the presented approach with the conventional algorithms emphasized the efficiency of the proposed framework in terms of accuracy, precision, recall, etc. The analysis showed that the presented model attained attack prediction accuracy of 99.92% and 99.91% for KDDCUP99 and UNSWNB-15, respectively.

Funder

Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3