Mathematical Modeling of Pseudoplastic Nanofluid Natural Convection in a Cavity with a Heat-Generating Unit and Solid Finned Heat Sink

Author:

Loenko Daria S.1,Sheremet Mikhail A.1

Affiliation:

1. Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634050 Tomsk, Russia

Abstract

The power-law nanofluid natural convection in a chamber with a thermally generating unit and a solid ribbed structure has been studied in this work. A mixture of carboxymethylcellulose with water and copper nanoparticles is a working fluid illustrating pseudoplastic properties. The effective properties of the nanoliquid have been described by experimental correlations reflecting the temperature effect. The governing equations have been formulated on the basis of the conservation laws of mass, momentum and energy employing non-primitive parameters such as stream function and vorticity. The defined boundary value problem has been worked out by the finite difference technique using an independently developed calculation system. The Rayleigh number is fixed for analysis (Ra = 105). The paper analyzes the influence of the nanoparticles volume fraction, an increase in which reduces the temperature in the case of the one edge presence. An analysis of the rib height has shown that its growth leads to a weakening of the convective heat transfer, but at the same time, the source temperature also decreases. Increasing the number of fins from 1 to 3 also helps to reduce the average temperature of the heat-generated element by 15%.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3