Affiliation:
1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China
Abstract
Quantile regression models are remarkable structures for conducting regression analyses when the data are subject to missingness. Missing values occur because of various factors like missing completely at random, missing at random, or missing not at random. All these may result from system malfunction during data collection or human error during data preprocessing. Nevertheless, it is important to deal with missing values before analyzing data since ignoring or omitting missing values may result in biased or misinformed analysis. This paper studies quantile regressions from a Bayesian perspective. By proposing a hierarchical model framework, we develop an alternative approach based on deterministic variational Bayes approximations. Logistic and probit models are adopted to specify propensity scores for missing manifests and covariates, respectively. Bayesian variable selection method is proposed to recognize significant covariates. Several simulation studies and real examples illustrate the advantages of the proposed methodology and offer some possible future research directions.
Funder
National Natural Science Foundation of the People’s Republic of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference30 articles.
1. Regression quantiles;Koenker;Econom. Econom. Soc.,1987
2. Stock return autocorrelations revisited: A quantile regression approach;Baur;J. Empir. Finance,2012
3. Huang, L., Zhu, W., Saunders, C.P., MacLeod, J.N., Zhou, M., Stromberg, A.J., and Bathke, A.C. (2008). A novel application of quantile regression for identification of biomarkers exemplified by equine cartilage microarray data. BMC Bioinform., 9.
4. A gentle introduction to quantile regression for ecologists;Cade;Front. Ecol. Environ.,2003
5. Bayesian analysis of a Tobit quantile regression model;Yu;J. Econom.,2007