Validation of HiG-Flow Software for Simulating Two-Phase Flows with a 3D Geometric Volume of Fluid Algorithm

Author:

Silva Aquisson T. G. da1ORCID,Fernandes Célio23ORCID,Organista Juniormar1ORCID,Souza Leandro1ORCID,Castelo Antonio1ORCID

Affiliation:

1. Institute of Mathematical and Computer Sciences (ICMC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil

2. Transport Phenomena Research Center (CEFT), Faculty of Engineering at University of Porto (FEUP), 4200-465 Porto, Portugal

3. Center of Mathematics (CMAT), School of Sciences at University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal

Abstract

This study reports the development of a numerical method to simulate two-phase flows of Newtonian fluids that are incompressible, immiscible, and isothermal. The interface in the simulation is located and reconstructed using the geometric volume of fluid (VOF) method. The implementation of the piecewise-linear interface calculation (PLIC) scheme of the VOF method is performed to solve the three-dimensional (3D) interface transport during the dynamics of two-phase flows. In this method, the interface is approximated by a line segment in each interfacial cell. The balance of forces at the interface is accounted for using the continuum interfacial force (CSF) model. To solve the Navier–Stokes equations, meshless finite difference schemes from the HiG-Flow computational fluid dynamics software are employed. The 3D PLIC-VOF HiG-Flow algorithm is used to simulate several benchmark two-phase flows for the purpose of validating the numerical implementation. First, the performance of the PLIC implementation is evaluated by conducting two standard advection numerical tests: the 3D shearing flow test and the 3D deforming field test. Good agreement is obtained for the 3D interface shape using both the 3D PLIC-VOF HiG-Flow algorithm and those found in the scientific literature, specifically, the piecewise-constant flux surface calculation, the volume of fluid method implemented in OpenFOAM, and the high-order finite-element software FEEL. In addition, the absolute error of the volume tracking advection calculation obtained by our 3D PLIC-VOF HiG-Flow algorithm is found to be smaller than the one found in the scientific literature for both the 3D shearing and 3D deforming flow tests. The volume fraction conservation absolute errors obtained using our algorithm are 4.48×10−5 and 9.41×10−6 for both shearing and deforming flow tests, respectively, being two orders lower than the results presented in the scientific literature at the same level of mesh refinement. Lastly, the 3D bubble rising problem is simulated for different fluid densities (ρ1/ρ2=10 and ρ1/ρ2=1000) and viscosity ratios (μ1/μ2=10 and μ1/μ2=100). Again, good agreement is obtained for the 3D interface shape using both the newly implemented algorithm and OpenFOAM, DROPS, and NaSt3D software. The 3D PLIC-VOF HiG-Flow algorithm predicted a stable ellipsoidal droplet shape for ρ1/ρ2=10 and μ1/μ2=10, and a stable cap shape for ρ1/ρ2=1000 and μ1/μ2=100. The bubble’s rise velocity and evolution of the bubble’s center of mass are also computed with the 3D PLIC-VOF HiG-Flow algorithm and found to be in agreement with those software. The rise velocity of the droplet for both the ellipsoidal and cap flow regime’s is found, in the initial stages of the simulation, to gradually increase from its initial value of zero to a maximum magnitude; then, the steady-state velocity of the droplet decreases, being more accentuated for the cap regime.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001; São Paulo Research Foundation

Fundação para a Ciência e a Tecnologia (FCT) and Centre of Mathematics (CMAT) of the University of Minho

FCT

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3