Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory

Author:

Agarwal Ravi P.1ORCID,Hristova Snezhana2ORCID,O’Regan Donal3ORCID

Affiliation:

1. Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX 78363, USA

2. Faculty of Mathematics and Informatics, Plovdiv University “P. Hilendarski”, 4000 Plovdiv, Bulgaria

3. School of Mathematical and Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland

Abstract

In recent years, various qualitative investigations of the properties of differential equations with different types of generalizations of Riemann–Liouville fractional derivatives were studied and stability properties were investigated, usually using Lyapunov functions. In the application of Lyapunov functions, we need appropriate inequalities for the fractional derivatives of these functions. In this paper, we consider several Riemann–Liouville types of fractional derivatives and prove inequalities for derivatives of convex Lyapunov functions. In particular, we consider the classical Riemann–Liouville fractional derivative, the Riemann–Liouville fractional derivative with respect to a function, the tempered Riemann–Liouville fractional derivative, and the tempered Riemann–Liouville fractional derivative with respect to a function. We discuss their relations and their basic properties, as well as the connection between them. We prove inequalities for Lyapunov functions from a special class, and this special class of functions is similar to the class of convex functions of many variables. Note that, in the literature, the most common Lyapunov functions are the quadratic ones and the absolute value ones, which are included in the studied class. As a result, special cases of our inequalities include Lyapunov functions given by absolute values, quadratic ones, and exponential ones with the above given four types of fractional derivatives. These results are useful in studying types of stability of the solutions of differential equations with the above-mentioned types of fractional derivatives. To illustrate the application of our inequalities, we define Mittag–Leffler stability in time on an interval excluding the initial time point. Several stability criteria are obtained.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3