Using Noisy Evaluation to Accelerate Parameter Optimization of Medical Image Segmentation Ensembles

Author:

Tóth János12ORCID,Tomán Henrietta1ORCID,Hajdu Gabriella3,Hajdu András1ORCID

Affiliation:

1. Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, 4028 Debrecen, Hungary

2. HUN-REN–UD Equations, Functions, Curves and Their Applications Research Group, 4032 Debrecen, Hungary

3. Institute of Mathematics and Basic Science, Hungarian University of Agricultural and Life Sciences, 2100 Gödöllő, Hungary

Abstract

An important concern with regard to the ensembles of algorithms is that using the individually optimal parameter settings of the members does not necessarily maximize the performance of the ensemble itself. In this paper, we propose a novel evaluation method for simulated annealing that combines dataset sampling and image downscaling to accelerate the parameter optimization of medical image segmentation ensembles. The scaling levels and sample sizes required to maintain the convergence of the search are theoretically determined by adapting previous results for simulated annealing with imprecise energy measurements. To demonstrate the efficiency of the proposed method, we optimize the parameters of an ensemble for lung segmentation in CT scans. Our experimental results show that the proposed method can maintain the solution quality of the base method with significantly lower runtime. In our problem, optimization with simulated annealing yielded an F1 score of 0.9397 and an associated MCC of 0.7757. Our proposed method maintained the solution quality with an F1 score of 0.9395 and MCC of 0.7755 while exhibiting a 42.01% reduction in runtime. It was also shown that the proposed method is more efficient than simulated annealing with only sampling-based evaluation when the dataset size is below a problem-specific threshold.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3