ClueCatcher: Catching Domain-Wise Independent Clues for Deepfake Detection

Author:

Lee Eun-Gi1,Lee Isack1,Yoo Seok-Bong1ORCID

Affiliation:

1. Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Republic of Korea

Abstract

Deepfake detection is a focus of extensive research to combat the proliferation of manipulated media. Existing approaches suffer from limited generalizability and struggle to detect deepfakes created using unseen techniques. This paper proposes a novel deepfake detection method to improve generalizability. We observe domain-wise independent clues in deepfake images, including inconsistencies in facial colors, detectable artifacts at synthesis boundaries, and disparities in quality between facial and nonfacial regions. This approach uses an interpatch dissimilarity estimator and a multistream convolutional neural network to capture deepfake clues unique to each feature. By exploiting these clues, we enhance the effectiveness and generalizability of deepfake detection. The experimental results demonstrate the improved performance and robustness of this method.

Funder

Industrial Fundamental Technology Development Program

MOTIE of Korea

Korean government

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Did You Note My Palette? Unveiling Synthetic Images Through Color Statistics;Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security;2024-06-24

2. Improving Detection of DeepFakes through Facial Region Analysis in Images;Electronics;2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3