Defect-Band Splitting of a One-Dimensional Phononic Crystal with Double Defects for Bending-Wave Excitation

Author:

Jo Soo-Ho1ORCID,Lee Donghyu2,Youn Byeng D.23ORCID

Affiliation:

1. Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea

2. Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea

3. Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea

Abstract

Extensive prior research has delved into the localization of elastic wave energy through defect modes within phononic crystals (PnCs). The amalgamation of defective PnCs with piezoelectric materials has opened new avenues for conceptual innovations catering to energy harvesters, wave filters, and ultrasonic receivers. A recent departure from this conventional paradigm involves designing an ultrasonic actuator that excites elastic waves. However, previous efforts have mostly focused on single-defect scenarios for bending-wave excitation. To push the boundaries, this research takes a step forward by extending PnC design to include double piezoelectric defects. This advancement allows ultrasonic actuators to effectively operate across multiple frequencies. An analytical model originally developed for a single-defect situation via Euler–Bernoulli beam theory is adapted to fit within the framework of a double-defect set-up, predicting wave-excitation performance. Furthermore, a comprehensive study is executed to analyze how changes in input voltage configurations impact the output responses. The ultimate goal is to create ultrasonic transducers that could have practical applications in nondestructive testing for monitoring structural health and in ultrasonic imaging for medical purposes.

Funder

National Research Foundation of Korea (NRF), funded by the Ministry of Education

Korea Government

Dongguk University Research Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3