Control for Bioethanol Production in a Pressure Swing Adsorption Process Using an Artificial Neural Network

Author:

Ramos-Martinez Moises1ORCID,Torres-Cantero Carlos Alberto23ORCID,Ortiz-Torres Gerardo1ORCID,Sorcia-Vázquez Felipe D. J.1ORCID,Avila-George Himer1ORCID,Lozoya-Ponce Ricardo Eliú4ORCID,Vargas-Méndez Rodolfo A.5,Renteria-Vargas Erasmo M.1,Rumbo-Morales Jesse Y.1ORCID

Affiliation:

1. Departamento de Ciencias Computacionale e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5 C.P., Ameca 46600, Jalisco, Mexico

2. Tecnológico Nacional de Mexico Campus Colima, Av. Tecnológico # 1, Col. Liberación, Villa de Álvarez 28976, Colima, Mexico

3. Facultad de Ingeniería Mecánica y Eléctrica de la Universidad de Colima, Carretera Colima-Coquimatlan Km 9, Valle de las Huertas, Coquimatlán 28400, Colima, Mexico

4. División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México campus Chihuahua, Chihuahua 31310, Chih, Mexico

5. Department of Electronic Engineering, CENIDET, Cuernavaca 62490, Morelos, Mexico

Abstract

This paper introduces a new approach to controlling Pressure Swing Adsorption (PSA) using a neural network controller based on a Model Predictive Control (MPC) process. We use a Hammerstein–Wiener (HW) model representing the real PSA process data. Then, we design an MPC-controlled model based on the HW model to maintain the bioethanol purity near 99% molar fraction. This work proposes an Artificial Neural Network (ANN) that captures the dynamics of the PSA model controlled by the MPC strategy. Both controllers are validated using the HW model of the PSA process, showing great performance and robustness against disturbances. The results show that we can follow the desired trajectory and attenuate disturbances, achieving the purity of bioethanol at a molar fraction value of 0.99 using the ANN based on the MPC strategy with 94% of fit in the control signal and a 97% fit in the purity signal, so we can conclude that our ANN can be used to attenuate disturbances and maintain purity in the PSA process.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3