A Family of Holomorphic and m-Fold Symmetric Bi-Univalent Functions Endowed with Coefficient Estimate Problems

Author:

Sabir Pishtiwan Othman1,Srivastava Hari Mohan234ORCID,Atshan Waggas Galib5ORCID,Mohammed Pshtiwan Othman6ORCID,Chorfi Nejmeddine7,Vivas-Cortez Miguel8ORCID

Affiliation:

1. Department of Mathematics, College of Science, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq

2. Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada

3. Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea

4. Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy

5. Department of Mathematics, College of Science, University of Al-Qadisiyah, Al-Diwaniyah 58001, Al-Qadisiyah, Iraq

6. Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq

7. Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

8. Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic University of Ecuador, Av. 12 de Octubre 1076 y Roca, Quito 170143, Ecuador

Abstract

This paper presents a new general subfamily NΣmu,v(η,μ,γ,ℓ) of the family Σm that contains holomorphic normalized m-fold symmetric bi-univalent functions in the open unit disk D associated with the Ruscheweyh derivative operator. For functions belonging to the family introduced here, we find estimates of the Taylor–Maclaurin coefficients am+1 and a2m+1, and the consequences of the results are discussed. The current findings both extend and enhance certain recent studies in this field, and in specific scenarios, they also establish several connections with known results.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference20 articles.

1. New criteria for univalent functions;Ruscheweyh;Proc. Am. Math. Soc.,1975

2. Duren, P.L. (1983). Univalent Functions, Springer. Grundlehren der Mathematischen Wissenschaften, Band 259.

3. On a coefficient problem for bi-univalent functions;Lewin;Proc. Am. Math. Soc.,1967

4. Brannan, D.A., and Clunie, J.G. (1979, January 1–20). Aspects of Contemporary Complex Analysis. Proceedings of the NATO Advanced Study Institute, Durham, UK.

5. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1;Netanyahu;Arch. Ration. Mech. Anal.,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3