Automatic Piston-Type Flow Standard Device Calibration System

Author:

Song Xinming1,Wang Xiaoli1ORCID,Ma Min1

Affiliation:

1. School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264200, China

Abstract

Measurement of flow is crucial for assuring product quality, increasing manufacturing effectiveness, and promoting the development of science and technology. With the advancement of calibration and automation, standard devices using the mass method, volumetric method, and master meter method have limitations, such as low calibration efficiency and automation, large size, and complex operation. Innovations in this area are desperately needed. To realize the automation of calibrating ultrasonic water meters, a piston-type flow standard device calibration system with a high degree of automation, high calibration efficiency, small size, and easy operation was designed. A piston-type flow standard device was designed, the standard device was modeled, the selection of the main hardware and the design of the automated control of the hardware parts were completed; an automation control system adapted to the flow standard device was developed; and, furthermore, a water meter flow point calibration algorithm integrating the start–stop method and the dual-time method, as well as a water meter flow correction algorithm, was devised to improve the efficiency of ultrasonic water meter calibration. An uncertainty assessment of the designed system was completed; the standard uncertainty and expanded uncertainty of the device were 0.013% and 0.026%. Meanwhile, flow calibration tests were conducted, validating the rationality of the automated calibration algorithm for ultrasonic water meters. The results show that ultrasonic water meters calibrated with flow correction have a flow error within ±3% in the “low flow range” and within ±2% in the “high flow range”, with a repeatability of less than 0.05%. This indicates that a piston-type flow standard device, coupled with an automation calibration control system, can efficiently, accurately, and conveniently perform water meter calibration, and the system has good practical value.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3