Expression of E. coli FimH Enhances Trafficking of an Orally Delivered Lactobacillus acidophilus Vaccine to Immune Inductive Sites via Antigen-Presenting Cells

Author:

Vilander Allison C.1,Shelton Kimberly1ORCID,LaVoy Alora1,Dean Gregg A.1ORCID

Affiliation:

1. Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA

Abstract

The development of lactic acid bacteria as mucosal vaccine vectors requires the identification of robust mucosal adjuvants to increase vaccine effectiveness. The E. coli type I fimbriae adhesion protein FimH is of interest as a mucosal adjuvant as it targets microfold (M) cells enhancing vaccine uptake into Peyer’s patches and can activate the innate immune system via Toll-like receptor (TLR) 4 binding. Here, we displayed the N-terminal domain of FimH on the surface of a Lactobacillus acidophilus vaccine vector and evaluated its ability to increase uptake of L. acidophilus into Peyer’s patches and activate innate immune responses. FimH was robustly displayed on the L. acidophilus surface but did not increase uptake into the Peyer’s patches. FimH did increase trafficking of L. acidophilus to mesenteric lymph nodes by antigen-presenting cells including macrophages and dendritic cells. It also increased transcription of retinaldehyde dehydrogenase and decreased transcription of IL-21 in the Peyer’s patches and mesenteric lymph nodes. The N-terminal domain of FimH did not activate TLR4 in vitro, indicating that FimH may stimulate innate immune responses through a not-yet-identified mechanism. These results indicate that E. coli FimH alters the innate immune response to L. acidophilus and should be further studied as an adjuvant for lactic acid bacterial vaccine platforms.

Funder

National Institute of Allergy and Infectious Diseases of the National Institutes of Health

NIH T32 Research Training

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3