Yersinia pestis Antigen F1 but Not LcrV Induced Humoral and Cellular Immune Responses in Humans Immunized with Live Plague Vaccine—Comparison of Immunoinformatic and Immunological Approaches

Author:

Feodorova Valentina A.,Lyapina Anna M.,Khizhnyakova Maria A.ORCID,Zaitsev Sergey S.,Saltykov Yury V.,Motin Vladimir L.

Abstract

The recent progress in immunoinformatics provided the basis for an accelerated development of target-specific peptide vaccines as an alternative to the traditional vaccine concept. However, there is still limited information on whether the in silico predicted immunoreactive epitopes correspond to those obtained from the actual experiments. Here, humoral and cellular immune responses to two major Yersinia pestis protective antigens, F1 and LcrV, were studied in human donors immunized with the live plague vaccine (LPV) based on the attenuated Y. pestis strain EV line NIIEG. The F1 antigen provided modest specific cellular (mixed T helper 1 (Th1)/Th2 type) and humoral immune responses in vaccinees irrespective of the amount of annual vaccinations and duration of the post-vaccination period. The probing of the F1 overlapping peptide library with the F1-positive sera revealed the presence of seven linear B cell epitopes, which were all also predicted by in silico assay. The immunoinformatics study evaluated their antigenicity, toxicity, and allergenic properties. The epitope TSQDGNNH was mostly recognized by the sera from recently vaccinated donors rather than antibodies from those immunized decades ago, suggesting the usefulness of this peptide for differentiation between recent and long-term vaccinations. The in silico analysis predicted nine linear LcrV-specific B-cell epitopes; however, weak antibody and cellular immune responses prevented their experimental evaluation, indicating that LcrV is a poor marker of successful vaccination. No specific Th17 immune response to either F1 or LcrV was detected, and there were no detectable serum levels of F1-specific immunoglobulin A (IgA) in vaccinees. Overall, the general approach validated in the LPV model could be valuable for the rational design of vaccines against other neglected and novel emerging infections with high pandemic potency.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3