The Stability and Efficency of CPB Cells Were Acclimated for Virus Proliferation

Author:

Niu Yinjie1,Ma Saiya1,Liang Hongru1,Fu Xiaozhe1,Ma Baofu1,Lin Qiang1,Luo Xia1,Li Ningqiu1

Affiliation:

1. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China

Abstract

Background: Vaccinations are still the most effective means of preventing and controlling fish viral diseases, and cells are an important substrate for the production of a viral vaccine. Therefore, the rapid-stable growth and virus sensitivity of cells are urgently needed. Methods: Chinese perch brain 100th passage (CPB p100) were acclimated in a low serum with 5% FBS L-15 for 50 passages, then transferred to 8% FBS L-15 for 150 passages. Additionally, the morphology and cell type of CPB 300th passage (CPB p300) cells were identified. We analyzed the transfection efficiency and virus sensitivity of CPB p300 cells, and then optimized the conditions of ISKNV, SCRV, and LMBV multiplication in CPB cells. Results: CPB p300 cells were more homogeneous, and the spread diameter (20–30) µm in CPB p300 cells became the dominant population. The doubling time of CPB p300 was 1.5 times shorter than that of CPB p100.However, multiplication rate of CPB p300 was 1.37 times higher than CPB p100. CPB p300 cells were susceptible to ISKNV, SCRV, and LMBV, and the optimal conditions of ISKNV, SCRV, and LMBV multiplication were simultaneous incubation, 0.6 × 105 cells/cm2 and MOI = 0.1; infection at 48 h, 0.8 × 105 cells/cm2 and MOI = 0.01; simultaneous incubation, 0.7 × 105 cells/cm2 and MOI = 0.05, respectively. The time and economic costs of ISKNV, SCRV, and LMBV multiplication in CPB p300 cells were significantly reduced. Conclusions: The acquisition of CPB p300 cells laid a good material foundation for the production of ISKNV, SCRV, and LMBV vaccines.

Funder

Science and Technology Program of Guangzhou

Special Funds for Marine Economy Development (Six marine industries) of Guangdong Province

Key Research and Development Program of Guangzhou City

Central Public-Interest Scientific Institution Basal Research Fund, CAFS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3