The Anti-Tumor and Immunomodulatory Effects of PLGA-Based Docetaxel Nanoparticles in Lung Cancer: The Potential Involvement of Necroptotic Cell Death through Reactive Oxygen Species and Calcium Build-Up

Author:

Gupta Parul,Singh Arpita,Verma Ajay Kumar,Kant Surya,Pandey Anuj Kumar,Khare Puneet,Prakash Ved

Abstract

Taxanes, microtubule stabilizing agents, are extensively used in the treatment of non-small cell lung cancer (NSCLC). However, their clinical effectiveness remains restricted owing to significant adverse effects and drug resistance. Nanotechnology may guide chemotherapeutic drugs directly and selectively to malignant cells, improving their therapeutic efficiency. In the present study, we synthesized polylactic-co-glycolic acid (PLGA) based nanoparticles encapsulating docetaxel and evaluated their efficacy in non-small cell lung carcinoma (A549) cells and primary immune cells derived from humans. Docetaxel–PLGA nanoparticles (PLGA-Dtx) were synthesized and characterized using distinct methods. Moreover, the cytotoxicity of free docetaxel (Dtx) and Dtx-conjugated nanoparticles (PLGA-Dtx) was studied in A549 cells and peripheral blood mononuclear cells derived from humans. Furthermore, annexin V-FITC/PI staining was used to assess the mode of cell death. Additionally, human peripheral blood mononuclear cells (PBMCs) were used for assessing the associated immune response and cytokine profile following PLGA-Dtx treatment. Spherical PLGA-Dtx nanoparticles with a 150 ± 10 nm diameter and 70% encapsulation efficiency (EE) were synthesized. The MTT assay showed that the IC50 of PLGA-Dtx nanoparticles was significantly lower than free docetaxel in A549 cells. Cytotoxicity data also revealed the selective nature of PLGA-Dtx with no significant effects in normal human bronchial epithelial cells (BEAS-2B) and PBMCs derived from healthy donors. Interestingly, PLGA-Dtx exerted an improved effect and tempted both apoptosis and necroptosis, as evidenced by annexin V and propidium iodide–positive cells. Further, PLGA-Dtx-exposed A549 cells showed increased Cas-3, Cas-9, RIP-1, and RIP-3, indicating apoptosis and necroptosis. An increased pro-inflammatory response manifested from the enhancement of IFN-γ and TNF-α in PLGA-Dtx-exposed PBMCs, posed by the occurrence of necroptosis and the immune stimulatory effect of PLGA-Dtx. In conclusion, PLGA-Dtx has a selective anticancer potential and better immunostimulatory potential. Therefore, PLGA-Dtx may be useful for the treatment of non-small cell lung carcinoma.

Funder

Council of Scientific and Industrial Research

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Reference53 articles.

1. (2022, July 26). Lung Source: Globocan 2020 Number of New Cases in 2020, Both Sexes, All Ages. Available online: https://gco.iarc.fr/today.

2. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment;Sui;Cell Death Dis.,2013

3. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs);Rathore;Apoptosis,2017

4. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles;Singh;Signal Transduct. Target. Ther.,2019

5. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors;Aman;Int. J. Nanomed.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3