Leishmaniac Quest for Developing a Novel Vaccine Platform. Is a Roadmap for Its Advances Provided by the Mad Dash to Produce Vaccines for COVID-19?

Author:

Chang Kwang Poo,Reynolds Joseph M.,Liu Ying,He Johnny J.

Abstract

“Bugs as drugs” in medicine encompasses the use of microbes to enhance the efficacy of vaccination, such as the delivery of vaccines by Leishmania—the protozoan etiological agent of leishmaniasis. This novel approach is appraised in light of the successful development of vaccines for Covid-19. All relevant aspects of this pandemic are summarized to provide the necessary framework in contrast to leishmaniasis. The presentation is in a side-by-side matching format with particular emphasis on vaccines. The comparative approach makes it possible to highlight the timeframe of the vaccine workflows condensed by the caveats of pandemic urgency and, at the same time, provides the background of Leishmania behind its use as a vaccine carrier. Previous studies in support of the latter are summarized as follows. Leishmaniasis confers life-long immunity on patients after cure, suggesting the effective vaccination is achievable with whole-cell Leishmania. A new strategy was developed to inactivate these cells in vitro, rendering them non-viable, hence non-disease causing, albeit retaining their immunogenicity and adjuvanticity. This was achieved by installing a dual suicidal mechanism in Leishmania for singlet oxygen (1O2)-initiated inactivation. In vitro cultured Leishmania were genetically engineered for cytosolic accumulation of UV-sensitive uroporphyrin I and further loaded endosomally with a red light-sensitive cationic phthalocyanine. Exposing these doubly dye-loaded Leishmania to light triggers intracellular production of highly reactive but extremely short-lived 1O2, resulting in their rapid and complete inactivation. Immunization of susceptible animals with such inactivated Leishmania elicited immunity to protect them against experimental leishmaniasis. Significantly, the inactivated Leishmania was shown to effectively deliver transgenically add-on ovalbumin (OVA) to antigen-presenting cells (APC), wherein OVA epitopes were processed appropriately for presentation with MHC molecules to activate epitope-specific CD8+ T cells. Application of this approach to deliver cancer vaccine candidates, e.g., enolase-1, was shown to suppress tumor development in mouse models. A similar approach is predicted to elicit lasting immunity against infectious diseases, including complementation of the spike protein-based vaccines in use for COVID-19. This pandemic is devastating, but brings to light the necessity of considering many facets of the disease in developing vaccination programs. Closer collaboration is essential among those in diverse disciplinary areas to provide the roadmap toward greater success in the future. Highlighted herein are several specific issues of vaccinology and new approaches worthy of consideration due to the pandemic.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Reference104 articles.

1. Overview of Leishmaniasis with Special Emphasis on Kala-Azar in South Asia;Chang,2018

2. Leishmaniases;Chang,2021

3. Coronavirus biology and replication: implications for SARS-CoV-2

4. The molecular virology of coronaviruses

5. SARS-CoV-2 (COVID-19) by the numbers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3