A Comprehensive Molecular and Clinical Investigation of Approved Anti-HCV Drugs Repurposing against SARS-CoV-2 Infection: A Glaring Gap between Benchside and Bedside Medicine

Author:

Bansode Sneha1,Singh Pawan Kumar2,Tellis Meenakshi1,Chugh Anita3,Deshmukh Narendra3,Gupta Mahesh2,Verma Savita2,Giri Ashok14ORCID,Kulkarni Mahesh14,Joshi Rakesh14,Chaudhary Dhruva2

Affiliation:

1. CSIR-National Chemical Laboratory, Biochemical Sciences Division, Dr. Homi Bhabha Road, Pune 411008, India

2. Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, India

3. INTOX Private Limited, Pune 412115, India

4. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

Abstract

The limited availability of effective treatment against SARS-CoV-2 infection is a major challenge in managing COVID-19. This scenario has augmented the need for repurposing anti-virals for COVID-19 mitigation. In this report, the anti-SARS-CoV-2 potential of anti-HCV drugs such as daclatasvir (DCV) or ledipasvir (LDP) in combination with sofosbuvir (SOF) was evaluated. The binding mode and higher affinity of these molecules with RNA-dependent-RNA-polymerase of SARS-CoV-2 were apparent by computational analysis. In vitro anti-SARS-CoV-2 activity depicted that SOF/DCV and SOF/LDP combination has IC50 of 1.8 and 2.0 µM, respectively, comparable to remdesivir, an approved drug for COVID-19. Furthermore, the clinical trial was conducted in 183 mild COVID-19 patients for 14 days to check the efficacy and safety of SOF/DCV and SOF/LDP compared to standard of care (SOC) in a parallel-group, hybrid, individually randomized, controlled clinical study. The primary outcomes of the study suggested no significant difference in negativity after 3, 7 and 14 days in both treatments. None of the patients displayed any worsening in the disease severity, and no mortality was observed in the study. Although, the post hoc exploratory analysis indicated significant normalization of the pulse rate showed in SOF/DCV and SOF/LDP treatment vs. SOC. The current study highlights the limitations of bench side models in predicting the clinical efficacy of drugs that are planned for repurposing.

Funder

DBT BIRAC

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3