The Association of Bacterin and Recombinant Proteins Induces a Humoral Response in Sheep against Caseous Lymphadenitis

Author:

Moreira Luan Santana,Lopes Natália da Rocha,Pereira Vitor Cordeiro,Andrade Caio Lopes Borges,Torres Alex José Leite,Ribeiro Marcos Borges,Freire Songeli Menezes,Santos Ramon Mendes dos,D’ávila Milena,Nascimento Roberto Meyer,Marchioro Silvana BeutingerORCID

Abstract

In this study, we investigated the capacity of the recombinant proteins SpaC, NanH, SodC, and PLD of C. pseudotuberculosis to trigger protective humoral and cellular immune responses against experimentally induced C. pseudotuberculosis infection in sheep. The antigens were produced in a heterologous system and were purified by affinity chromatography. Nine sheep were randomly divided into three groups, which were immunized as follows: Group 1 (control)—a mix of adjuvants composed of the inactivated T1 strain of C. pseudotuberculosis and commercial Montanide™ISA 61 VG (T1M); Group 2—rSpaC, rSodC, rPLD, and T1M; Group 3—rNanH, rSodC, rPLD, and T1M. All groups were immunized twice (on days 0 and 30) and challenged on day 90 of the experiment. Humoral and cellular immune responses were evaluated by Enzyme-Linked Immunosorbent Assay (ELISA) to quantify the IgG antibodies and interferon-gamma (IFN-y). Both vaccine formulations with recombinant proteins (groups 2 and 3) could induce a significant humoral IgG immune response in sheep. The proteins rSodC, rPLD, and rNanH were more immunogenic, inducing significant levels of IgG antibodies after the first dose of the vaccine or after the challenge, maintaining constant levels until the end of the experiment. However, it was not possible to differentiate between the cellular responses induced by the vaccines. This lack of effectiveness points toward the need for further studies to improve the efficacy of this subunit-based vaccine approach.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3