In Vivo Validation of Novel Synthetic tbp1 Peptide-Based Vaccine Candidates against Haemophilus influenzae Strains in BALB/c Mice

Author:

Bibi Naseeha1ORCID,Wajeeha Amtul Wadood1,Mukhtar Mamuna1,Tahir Muhammad2ORCID,Zaidi Najam us Sahar Sadaf1

Affiliation:

1. Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2. Department of Plant Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

Abstract

Haemophilus influenzae is a Gram-negative bacterium characterized as a small, nonmotile, facultative anaerobic coccobacillus. It is a common cause of a variety of invasive and non-invasive infections. Among six serotypes (a–f), H. influenzae type b (Hib) is the most familiar and predominant mostly in children and immunocompromised individuals. Following Hib vaccination, infections due to other serotypes have increased in number, and currently, there is no suitable effective vaccine to induce cross-strain protective antibody responses. The current study was aimed to validate the capability of two 20-mer highly conserved synthetic tbp1 (transferrin-binding protein 1) peptide-based vaccine candidates (tbp1-E1 and tbp1-E2) predicted using in silico approaches to induce immune responses against H. influenzae strains. Cytokine induction ability, immune simulations, and molecular dynamics (MD) simulations were performed to confirm the candidacy of epitopic docked complexes. Synthetic peptide vaccine formulations in combination with two different adjuvants, BGs (Bacterial Ghosts) and CFA/IFA (complete/incomplete Freund’s adjuvant), were used in BALB/c mouse groups in three booster shots at two-week intervals. An indirect ELISA was performed to determine endpoint antibody titers using the Student’s t-distribution method. The results revealed that the synergistic use of both peptides in combination with BG adjuvants produced better results. Significant differences in absorbance values were observed in comparison to the rest of the peptide–adjuvant combinations. The findings of this study indicate that these tbp1 peptide-based vaccine candidates may present a preliminary set of peptides for the development of an effective cross-strain vaccine against H. influenzae in the future due to their highly conserved nature.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3