A Monoclonal Antibody Produced in Glycoengineered Plants Potently Neutralizes Monkeypox Virus

Author:

Esqueda Adrian12,Sun Haiyan1,Bonner James12,Lai Huafang1,Jugler Collin12ORCID,Kibler Karen V.1ORCID,Steinkellner Herta3ORCID,Chen Qiang12ORCID

Affiliation:

1. The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA

2. School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA

3. Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria

Abstract

The 2022 global outbreaks of monkeypox virus (MPXV) and increased human-to-human transmission calls for the urgent development of countermeasures to protect people who cannot benefit from vaccination. Here, we describe the development of glycovariants of 7D11, a neutralizing monoclonal IgG antibody (mAb) directed against the L1 transmembrane protein of the related vaccinia virus, in a plant-based system as a potential therapeutic against the current MPVX outbreak. Our results indicated that 7D11 mAb quickly accumulates to high levels within a week after gene introduction to plants. Plant-produced 7D11 mAb assembled correctly into the tetrameric IgG structure and can be easily purified to homogeneity. 7D11 mAb exhibited a largely homogeneous N-glycosylation profile, with or without plant-specific xylose and fucose residues, depending on the expression host, namely wild-type or glycoengineered plants. Plant-made 7D11 retained specific binding to its antigen and displayed a strong neutralization activity against MPXV, as least as potent as the reported activity against vaccinia virus. Our study highlights the utility of anti-L1 mAbs as MPXV therapeutics, and the use of glycoengineered plants to develop mAb glycovariants for potentially enhancing the efficacy of mAbs to combat ever-emerging/re-emerging viral diseases.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Reference46 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3