Autophagy Promotes Duck Tembusu Virus Replication by Suppressing p62/SQSTM1-Mediated Innate Immune Responses In Vitro

Author:

Hu Zhiqiang,Pan Yuhong,Cheng AnchunORCID,Zhang Xingcui,Wang Mingshu,Chen Shun,Zhu DekangORCID,Liu Mafeng,Yang Qiao,Wu Ying,Zhao Xinxin,Huang Juan,Zhang Shaqiu,Mao Sai,Ou Xumin,Yu Yanling,Zhang Ling,Liu Yunya,Tian Bin,Pan Leichang,Rehman Mujeeb Ur,Yin Zhongqiong,Jia Renyong

Abstract

Duck Tembusu virus (DTMUV) has recently appeared in ducks in China and the key cellular determiners for DTMUV replication in host cells remain unknown. Autophagy is an evolutionarily conserved cellular process that has been reported to facilitate flavivirus replication. In this study, we utilized primary duck embryo fibroblast (DEF) as the cell model and found that DTMUV infection triggered LC3-II increase and polyubiquitin-binding protein sequestosome 1 (p62) decrease, confirming that complete autophagy occurred in DEF cells. The induction of autophagy by pharmacological treatment increased DTMUV replication in DEF cells, whereas the inhibition of autophagy with pharmacological treatments or RNA interference decreased DTMUV replication. Inhibiting autophagy enhanced the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and interferon regulatory factor 7 (IRF7) pathways and increased the p62 protein level in DTMUV-infected cells. We further found that the overexpression of p62 decreased DTMUV replication and inhibited the activation of the NF-κB and IRF7 pathways, and changes in the NF-κB and IRF7 pathways were consistent with the level of phosphorylated TANK-binding kinase 1 (p-TBK1). Opposite results were found in p62 knockdown cells. In summary, we found that autophagy-mediated p62 degradation acted as a new strategy for DTMUV to evade host innate immunity.

Funder

National Natural Science Foundation of China

Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System

China Agricultural Research System

Sichuan Province Research Programs

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3