Design and Characterization of a Recombinant Brucella abortus RB51 Vaccine That Elicits Enhanced T Cell-Mediated Immune Response

Author:

Sarmadi Mahdieh,Gheibi AzamORCID,Khanahmad Hossein,Khorramizadeh Mohammad Reza,Hejazi Seyed Hossein,Zahedi NoushinORCID,Mianesaz HamidrezaORCID,Kashfi KhosrowORCID

Abstract

Brucella abortus vaccines help control bovine brucellosis. The RB51 strain is a live attenuated vaccine with low side effects compared with other live attenuated brucellosis vaccines, but it provides insufficient protective efficacy. Cell-mediated immune responses are critical in resistance against intracellular bacterial infections. Therefore, we hypothesized that the listeriolysin O (LLO) expression of Listeria monocytogenes, BAX, and SMAC apoptotic proteins in strain RB51 could enhance vaccine efficacy and safety. B. abortus RB51 was transformed separately with two broad-host-range plasmids (pbbr1ori-LLO and pBlu–mLLO-BAX-SMAC) constructed from our recent work. pbbr1ori-LLO contains LLO, and pBlu–mLLO-BAX-SMAC contains the mutant LLO and BAX-SMAC fusion gene. The murine macrophage-like cell line J774A.1 was infected with the RB51 recombinant strain containing pBlu-mLLO-BAX-SMAC, RB51 recombinant strain containing LLO, and RB51 strain. The bacterial cytotoxicity and survival and apoptosis of host cells contaminated with our two strain types—RB51 recombinants or the parental RB51—were assessed. Strain RB51 expressing mLLO and BAX-SMAC was tested in BALB/c mice and a cell line for enhanced modulation of IFN-γ production. LDH analysis showed that the RB51-mLLO-BAX-SMAC and RB51-LLO strains expressed higher cytotoxicity in J774A.1 cells than RB51. In addition, RB51 recombinants had lower macrophage survival rates and caused higher levels of apoptosis and necrosis. Mice vaccinated with the RB51 recombinant containing mLLO-BAX-SMAC showed an enhanced Th1 immune response. This enhanced immune response is primarily due to bacterial endosome escape and bacterial antigens, leading to improved apoptosis and cross-priming. This potentially enhanced TCD8+- and T cell-mediated immunity leads to the increased safety and potency of the RB51 recombinant (RB51 mLLO-BAX-SMAC) as a vaccine candidate against B. abortus.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3