Cell Culture-Derived Tilapia Lake Virus-Inactivated Vaccine Containing Montanide Adjuvant Provides High Protection against Viral Challenge for Tilapia

Author:

Zeng Weiwei,Wang Yingying,Hu Huzi,Wang Qing,Bergmann Sven M.ORCID,Wang Yahui,Li Bo,Lv Yuefeng,Li Hua,Yin Jiyuan,Li Yingying

Abstract

Tilapia lake virus (TiLV) is a newly emerging pathogen responsible for high mortality and economic losses in the global tilapia industry. Currently, no antiviral therapy or vaccines are available for the control of this disease. The goal of the present study was to evaluate the immunological effects and protective efficacy of formaldehyde- and β-propiolactone-inactivated vaccines against TiLV in the presence and absence of the Montanide IMS 1312 VG adjuvant in tilapia. We found that β-propiolactone inactivation of viral particles generated a vaccine with a higher protection efficacy against virus challenge than did formaldehyde. The relative percent survivals of vaccinated fish at doses of 108, 107, and 106 50% tissue culture infectious dose (TCID50)/mL were 42.9%, 28.5%, and 14.3% in the absence of the adjuvant and 85.7%, 64.3%, and 32.1% in its presence, respectively. The vaccine generated specific IgM and neutralizing antibodies against TiLV at 3 weeks following immunization that were significantly increased after a second booster immunization. The steady state mRNA levels of the genes tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon γ (IFN-γ), cluster of differentiation 4 (CD4), major histocompatibility complex (MHC)-Ia, and MHC-II were all increased and indicated successful immune stimulation against TiLV. The vaccine also significantly lowered the viral loads and resulted in significant increases in survival, indicating that the vaccine may also inhibit viral proliferation as well as stimulate a protective antibody response. The β-propiolactone-inactivated TiLV vaccine coupled with the adjuvant Montanide IMS 1312 VG and booster immunizations can provide a high level of protection from virus challenge in tilapia.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Reference84 articles.

1. The State of World Fisheries and Aquaculture, 2016,2016

2. Report of the FAO-INERA Workshop on Good Agricultural Practices,2004

3. TiLV-a worldwide menace to tilapiine aquaculture;Dinesh;J. Entomol. Zool. Stud.,2017

4. Research findings from the use of probiotics in tilapia aquaculture: A review;Ngo;Fish Shellfish Immunol.,2015

5. The current situation and analysis of the standardization of tilapia industry;Wang;J. Shanghai Ocean Univ.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3