Early Activation of the Innate Immunity and Specific Cellular Immune Pathways after Vaccination with a Live Intranasal Viral Vaccine and Challenge with Bovine Parainfluenza Type 3 Virus

Author:

Nuijten Piet,Cleton Natalie,van der Loop Jeroen,Makoschey Birgit,Pulskens Wilco,Vertenten GeertORCID

Abstract

Bovine parainfluenza type 3 (BPIV3) and bovine respiratory syncytial virus (BRSV) may cause bovine respiratory disease (BRD) in very young calves, and therefore vaccination should induce protection at the youngest age and as quickly as possible. This can be achieved by intranasal vaccination with a vaccine containing live attenuated BRSV and BPIV3 virus strains. The objective of this study was to measure gene expression levels by means of RT-qPCR of proteins involved in the innate and adaptive immune response in the nasopharyngeal mucosae after administration of the above-mentioned vaccine and after challenge with BPIV3. Gene expression profiles were different between (i) vaccinated, (ii) nonvaccinated-challenged, and (iii) vaccinated-challenged animals. In nonvaccinated-challenged animals, expression of genes involved in development of disease symptoms and pathology were increased, however, this was not the case after vaccination. Moreover, gene expression patterns of vaccinated animals reflected induction of the antiviral and innate immune pathways as well as an initial Th1 (cytotoxic) cellular response. After challenge with BPIV3, the vaccinated animals were protected against nasal shedding of the challenge virus and clinical symptoms, and in parallel the expression levels of the investigated genes had returned to values that were found before vaccination. In conclusion, in comparison to the virulent wild-type field isolates, the two virus strains in the vaccine have lost their capacity to evade the immune response, resulting in the induction of an antiviral state followed by a very early activation of innate immune and antiviral responses as well as induction of specific cellular immune pathways, resulting in protection. The exact changes in the genomes of these vaccine strains leading to attenuation have not been identified. These data represent the real-life situation and can serve as a basis for further detailed research. This is the first report describing the effects on immune gene expression profiles in the nasal mucosae induced by intranasal vaccination with a bivalent, live BRSV-BPI3V vaccine formulation in comparison to wild-type infection with a virulent BPI3V strain.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3