Immuno-Informatics Analysis of Pakistan-Based HCV Subtype-3a for Chimeric Polypeptide Vaccine Design

Author:

Ahmad SajjadORCID,Shahid Farah,Tahir ul Qamar MuhammadORCID,Rehman Habib ur,Abbasi Sumra Wajid,Sajjad Wasim,Ismail SabaORCID,Alrumaihi FarisORCID,Allemailem Khaled S.ORCID,Almatroudi AhmadORCID,Ullah Saeed Hafiz Fahad

Abstract

Hepatitis C virus (HCV) causes chronic and acute hepatitis infections. As there is extreme variability in the HCV genome, no approved HCV vaccine has been available so far. An effective polypeptide vaccine based on the functionally conserved epitopes will be greatly helpful in curing disease. For this purpose, an immuno-informatics study is performed based on the published HCV subtype-3a from Pakistan. First, the virus genome was translated to a polyprotein followed by a subsequent prediction of T-cell epitopes. Non-allergenic, IFN-γ producer, and antigenic epitopes were shortlisted, including 5 HTL epitopes and 4 CTL, which were linked to the final vaccine by GPGPG and AAY linkers, respectively. Beta defensin was included as an adjuvant through the EAAAK linker to improve the immunogenicity of the polypeptide. To ensure its safety and immunogenicity profile, antigenicity, allergenicity, and various physiochemical attributes of the polypeptide were evaluated. Molecular docking was conducted between TLR4 and vaccine to evaluate the binding affinity and molecular interactions. For stability assessment and binding of the vaccine-TLR4 docked complex, molecular dynamics (MD) simulation and MMGBSA binding free-energy analyses were conducted. Finally, the candidate vaccine was cloned in silico to ensure its effectiveness. The current vaccine requires future experimental confirmation to validate its effectiveness. The vaccine construct produced might be useful in providing immune protection against HCV-related infections.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3