Influenza Vaccination Mediates SARS-CoV-2 Spike Protein Peptide-Induced Inflammatory Response via Modification of Histone Acetylation

Author:

Zuo Zejie1ORCID,Mu Yating1ORCID,Qi Fangfang2ORCID,Zhang Hongyang3,Li Zhihui3ORCID,Zhou Tuo4ORCID,Guo Wenhai5,Guo Kaihua3,Hu Xiquan1,Yao Zhibin3

Affiliation:

1. Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China

2. Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA

3. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China

4. Guangzhou Women and Children’s Medical Center, Guangzhou 510620, China

5. Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China

Abstract

The effectiveness of coronavirus disease 2019 (COVID-19) vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain rapidly wanes over time. Growing evidence from epidemiological studies suggests that influenza vaccination is associated with a reduction in the risk of SARS-CoV-2 infection and COVID-19 severity. However, the underlying mechanisms remain elusive. Here, we investigate the cross-reactive immune responses of influenza vaccination to SARS-CoV-2 spike protein peptides based on in vitro study. Our data indicate enhanced activation-induced-marker (AIM) expression on CD4+ T cells in influenza-vaccination (IV)-treated peripheral blood mononuclear cells (PBMCs) upon stimulation with spike-protein-peptide pools. The fractions of other immune cell subtypes, including CD8+ T cells, monocytes, NK cells, and antigen-presenting cells, were not changed between IV-treated and control PBMCs following ex vivo spike-protein-peptide stimulation. However, the classical antiviral (IFN-γ) and anti-inflammatory (IL-1RA) cytokine responses to spike-protein-peptide stimulation were still enhanced in PBMCs from both IV-immunized adult and aged mice. Decreased expression of proinflammatory IL-1β, IL-12p40, and TNF-α is associated with inhibited levels of histone acetylation in PBMCs from IV-treated mice. Remarkably, prior immunity to SARS-CoV-2 does not result in modification of histone acetylation or hemagglutinin-protein-induced cytokine responses. This response is antibody-independent but can be mediated by manipulating the histone acetylation of PBMCs. These data experimentally support that influenza vaccination could induce modification of histone acetylation in immune cells and reveal the existence of potential cross-reactive immunity to SARS-CoV-2 antigens, which may provide insights for the adjuvant of influenza vaccine to limit COVID-19-related inflammatory responses.

Funder

Guangzhou Science and Technology planning project

National Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3