A Broad Influenza Vaccine Based on a Heat-Activated, Tissue-Restricted Replication-Competent Herpesvirus

Author:

Vilaboa Nuria12ORCID,Bloom David C.3ORCID,Canty William3,Voellmy Richard4ORCID

Affiliation:

1. Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain

2. CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain

3. Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA

4. HSF Pharmaceuticals SA, 1814 La Tour-de-Peilz, Switzerland

Abstract

Vaccination with transiently activated replication-competent controlled herpesviruses (RCCVs) expressing influenza A virus hemagglutinins broadly protects mice against lethal influenza virus challenges. The non-replicating RCCVs can be activated to transiently replicate with high efficiency. Activation involves a brief heat treatment to the epidermal administration site in the presence of a drug. The drug co-control is intended as a block to inadvertent reactivation in the nervous system and, secondarily, viremia under adverse conditions. While the broad protective effects observed raise an expectation that RCCVs may be developed as universal flu vaccines, the need for administering a co-activating drug may dampen enthusiasm for such a development. To replace the drug co-control, we isolated keratin gene promoters that were active in skin cells but inactive in nerve cells and other cells in vitro. In a mouse model of lethal central nervous system (CNS) infection, the administration of a recombinant that had the promoter of the infected cell protein 8 (ICP8) gene of a wild-type herpes simplex virus 1 (HSV-1) strain replaced by a keratin promoter did not result in any clinical signs, even at doses of 500 times wild-type virus LD50. Replication of the recombinant was undetectable in brain homogenates. Second-generation RCCVs expressing a subtype H1 hemagglutinin (HA) were generated in which the infected cell protein 4 (ICP4) genes were controlled by a heat switch and the ICP8 gene by the keratin promoter. In mice, these RCCVs replicated efficiently and in a heat-controlled fashion in the epidermal administration site. Immunization with the activated RCCVs induced robust neutralizing antibody responses against influenza viruses and protected against heterologous and cross-group influenza virus challenges.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3