The Limitations of a Hypothetical All-Variant COVID-19 Vaccine: A Simulation Study

Author:

Kosinski Robert J.1

Affiliation:

1. Independent Researcher, 303 Tamassee Drive, Clemson, SC 29631, USA

Abstract

This paper simulates a hypothetical pan-coronavirus vaccine that confers immediate sterilizing immunity against all SARS-CoV-2 variants. Simulations used a SEIIS (susceptible, exposed, infective, immune, susceptible) spreadsheet model that ran two parallel subpopulations: one that accepted vaccination and another that refused it. The two subpopulations could transmit infections to one another. Using data from the United States (US), the simulated vaccine was tested against limiting factors such as vaccine hesitancy, slow vaccination distribution, and the development of high-transmission variants. The vaccine was often successful at reducing cases, but high-transmission variants and discontinuation of non-pharmaceutical interventions (NPIs) such as masking greatly elevated cases. A puzzling outcome was that if NPIs were discontinued and high-transmission variants became common, the model predicted consistently higher rates of disease than are actually observed in the US in 2024. However, if cumulative exposure to virus antigens increased the duration of immunity or decreased the infectivity of the virus, the model predictions were brought back into a more realistic range. The major finding was that even when a COVID-19 vaccine always produces sterilizing immunity against every SARS-CoV-2 variant, its ability to control the epidemic can be compromised by multiple common conditions.

Publisher

MDPI AG

Reference26 articles.

1. (2024, March 13). COVID Data Tracker, Available online: https://covid.cdc.gov/covid-data-tracker/.

2. Moutinho, S. (2021). Brazilian town experiment shows mass vaccination can wipe out COVID-19. Science.

3. Israel’s COVID-19 endgame;Balicer;Science,2021

4. (2023, November 24). COVID Data Tracker, Vaccination Trends, Available online: https://covid.cdc.gov/covid-data-tracker/#vaccination-trends.

5. Estimates of SARS-CoV-2 seroprevalence and incidence of primary SARS-CoV-2 infections among blood donors, by COVID-19 vaccination status—United States, April 2021-September 2022;Jones;MMWR,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3